Find the angle between two vectors $\vec A = 2\hat i + \hat j - \hat k$ and $\vec B = \hat i - \hat k$ ....... $^o$

  • A

    $40$

  • B

    $30$

  • C

    $20$

  • D

    $10$

Similar Questions

Two vectors $A$ and $B$ have equal magnitude $x$. Angle between them is $60^{\circ}$. Then, match the following two columns.
colum $I$ colum $II$
$(A)$ $|A+B|$ $(p)$ $\frac{\sqrt{3}}{2} x$
$(B)$ $|A-B|$ $(q)$ $x$
$(C)$ $A \cdot B$ $(r)$ $\sqrt{3} x$
$(D)$ $|A \times B|$ $(s)$ None

Let $\overrightarrow A = \hat iA\,\cos \theta + \hat jA\,\sin \theta $ be any vector. Another vector $\overrightarrow B $ which is normal to $\overrightarrow A$ is

The two vectors have magnitudes $3$ and $5$. If angle between them is $60^o$, then the dot product of two vectors will be

Projection of vector $\vec A$ on $\vec B$ is

Explain cross product of two vectors.