Find the angle between two vectors $\vec A = 2\hat i + \hat j - \hat k$ and $\vec B = \hat i - \hat k$ ....... $^o$
$40$
$30$
$20$
$10$
colum $I$ | colum $II$ |
$(A)$ $|A+B|$ | $(p)$ $\frac{\sqrt{3}}{2} x$ |
$(B)$ $|A-B|$ | $(q)$ $x$ |
$(C)$ $A \cdot B$ | $(r)$ $\sqrt{3} x$ |
$(D)$ $|A \times B|$ | $(s)$ None |
Let $\overrightarrow A = \hat iA\,\cos \theta + \hat jA\,\sin \theta $ be any vector. Another vector $\overrightarrow B $ which is normal to $\overrightarrow A$ is
The two vectors have magnitudes $3$ and $5$. If angle between them is $60^o$, then the dot product of two vectors will be
Projection of vector $\vec A$ on $\vec B$ is
Explain cross product of two vectors.